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1. Introduction Let the process X(t), be defined by

R

i

- dX(t) = u(X(t))de + dW(t)

e whare W(t) is a standard Wienex process and u is a control fuaction,
v and X(0) = x.

v;’/w
LAY
v

Let 7 be even, convex, symmetric positive, exponeatially bounded
P and strictly increasing on the positive axis. Let the average expected

cost function be

fil o T
Iz = MR :}J E (RC(s)) + |u ®()]Y as

wvitche® >0 .,

g e

‘ .

The object is to find the control lawv u vhich minimizes J

~subject to a < U< b vhere a < 0 < b are real numbers. A two-dimensional

version is indicated. The case @ = 1 is considered in great detail in

LN

BN
+

[1]. The results for the cases @ ¥ 1 are given in this paper. The
complete proofs are as ia [l] and reference {s made to that paper for

. the conplete proofs of the results mentioned here. In fact, it will
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suffice to indicate the nature of the solutions to the "asymptotic
dynamic programming equation"” in one-or multi-dimensions in [1], since ‘
the other arguments are as given there, or sufficiently similar so as

to not be explicitly given. In one dimension it has the form

f"

X--z- + h(f') + o0,
! and yields the unique optimal control by the methods of [1].
k< II. Optimal Law
3
“A«L
5
By lemna 1, Llet a=2n, for m > 1 an integer. Leta <0<b.
¢ Let h(c) = min (uc + uzn)
§ a<u<b
i . Then
¥ . 1 1

- ES N C OREICHONEFT
R o> = 4

if ¢= 0

o
- \ min (tc +a?®  pe + b2“> otherwise 3)

Proof: The proof follows by an elementary computation, noting that
I‘ the minimum i{s either at an interior (differentiable) point or at a
boundary of u . ‘ |
o lemma 2. If o ¥ 2n, for some integer n > 1, for a <0 < b, if

h(c) ® min (uc + ‘u\a) ,
. a<u<bd

.y e -
.l
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then A 1
]_]_ a-1 _]_l_ a-1
a1 ( c ) ¢ le
' c(a) p if ¢ <0 and ) <b
h(c) - -
.. - a . a‘
.Lmi.n CO, ac + lal , be + |b] ) otherwise %)
Proof The minimum is either at an interior differentiable point or
at one of the three points 0, a, b.
Theorem 1 Assume a <0 <b .,
If d=2n,02>1
Then there are distinct numbers x; < X, such that for
X, <X <Xy, the "asymptotic dynamic programming equation [1], is
- . l'
2n +2n-1
A= &+ 5 2n /1O
For x> x,
*
x.g-l-af'-l-azn-l-cp. (5)
The Xy, Xy, A are found by continuity at the boundaries and by
setting £'(x,) = £'(=) or f'(xl) = £'(-2) .
@ Ifa¥2n atl
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Then there are distinct numbers Yg 1 < 2<3

Y1 <0< Yy < Y3 such that the "asymptotic dynamic

programming equations [1]" satisfy, if

xsyl’
£ o
A= +bE' + |b| +o
and 1if y1<x<0,
then
o
l-g'.+af'+|a| + 09
and if . 0<x<)r2
then 1
a-1
” 1 ]
X=§' /(-f)) <a+1)+
and if ¥, <%
thea
oo @
A= taf' 4 |a] +o, (6)

where the values Yy» Yp» Y35 A are obtained by setting the
solutions equal (by continuity) at Yi» Vo5 Y3 and f(y3) = £(®) or
Ey,) = £(-=.

Proof The expressions (5), (6) follow from (1), (2) using
monotonicity and symmetry of ¢, the properties of c u + |u|a

as a function of ¢, u, the consequent symmetry of £', and the

uniqueness arguments in [1].

Theorem 2

@Ifa-Zn, ifa<0<b,




5.
3:: the optimal law is
1
2n-1
C52)
. 2n » X <X<x
u(X) = ;
b sy X< x
a s X> x, (7)
@ If0<a$l, «# 2n, then for a <0 < b,
e -
,1:11
N 1
\ o1
B u x (‘ f' X )
(X) = l 5 1I£0<X<y,
B |
B b if X<y,
’ a ify, <X<Oory, <X (8)
Proof This follows immediately from Theorem 2 and the lemmas, (3) - (6).
3*“ Details are as in [1] for uniqueness and optimality of wu.
3. Multi-dimensional case-Remarks
Let X(t) be a k x 1 stochastic process with
3 dX(E) =  uX(E))dr + du(t) 9
x vhere uis dx1and Wis @ x 1 Wiener process with independent
p components and X (0) = x .
- Iat
1im 1,7 N
J(x,u) = o0, T Io E[cp (X(3)) + ugo_t_(s)).,p]ds (10)

vhere @ 1is even, convex, positive and exponentially bounded in

each argument, and
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1
d P P
where uu“ - ( z |uz| ) for some p > 0 .
P S
It is desired to minimize J subject to
a,<u,<b, 1<2<d
where a 2 b, 1<2<d are real numbers. This
constraint will be writtena <u<b.
let ¢ = (cl,...cd,) and
denote
h(® = =min (et ). (11)
a<u<b P

The evaluation of h(c) requires the evaluation of c-u + “E‘}P

. at the Zd + 1 points given by u, = a, or bl.’ 1 < 2£<d and at the
u minimizing c-u + “2“1,’ for fixed c¢. As c varies, Y is cut
into regions defined by the minimﬁm h(c) and the u achieving that
aininum,

Let £= £V (m),... .60 (9) for x= (x,....xp
such that

Pe(x)
=
fij(!) 5;5; exists and is continuous 1 < i, j<d.

Let 11(5_) - g:—j(l‘) .

For the various regiouns above, it is required to solve (for

. minimum A )

A= T ELG) + (D, E0) + 2 (@ . (12)
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Equating solutions at the boundary of these regions defines a
finite number of vectors X = (xu,...xld), preeerX where
n= Zd + 1 such that fj(ﬁr) = fj(ar) where G'r denotes any ray in
a boundary regiomn such that at least one coordinate may be set equal
to # @ and the point so obtained remain'in the region. This determines

A also.

It follows as before that if uy = optimal u , then

.
B g_o(l_t) = that u giving h(fl,...,fd)
Y
2,‘,.* : in aay of the regions given by the vectors as edges.
_;‘; Remark 2 If in addition lluﬂp <M<®, and if u op = optimal u
7 with this additional constraint, then with
LS
_ - ifflull <n
J “.".l.oup <
]
W
)
if \\gﬂﬂp =R>M (13)
b5 vhich follows by a variational inequality. See [2] for a similar
;—;{ argument.
#v
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e
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